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Determination of the Hurst exponent by use of wavelet transforms
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We propose a method fdglobal) Hurst exponent determination based on wavelets. Using this method, we
analyze synthetic data with predefined Hurst exponents, fracture surfaces, and data from economy. The results
are compared to those obtained with Fourier spectral analysis. When many samples are available, the wavelet
and Fourier methods are comparable in accuracy. However, when one or only a few samples are available, the
wavelet method outperforms the Fourier method by a large mdigit063-651X98)09808-0

PACS numbg(s): 05.40:+j, 02.30—f, 68.35.Bs, 61.43.Hv

I. INTRODUCTION systematic study of the quality of this and other traditional
methods is found in Ref7]. It should be pointed out that the
It has been known for quite some time that self-affinemethod described in this paper, like the FPS method, is only
surfaces are abundant in nature. They can be found in vark2lid for self-affine structure described by a global Hurst
ous areas of natural science such as surface grpwg),  €xPonent. _ _
fractured surfacef3], and geological structuréd], and bio- . '€ wavelet transform is an integral transform developed
logical systemg5]. Even the mercantile community has re- IN the early eighties in signal analysis and is today used in
ported such structurd$] (and references therdin different fields ranging from quantum p_hyS|cs and co_smpl-
Self-affine surfaces id-dimensional space are described 9 0 data compression technology. Since the late eighties,

by a set of up tal— 1 roughness exponents. To know thesewavelets have been an active research field in pure and ap-

exponents have many important physical implications. FirsPli€d mathematics, and large theoretical progress has been
of all, if we know all the roughness exponents, we have fu”made. The wavelet transform behaves as a mathematical mi-

control of the asymptotic statistical properties of the struc-CToScope that decomposes an input signal into amplitudes

ture. Furthermore, for instance in fracture propagafish that depend on position and scale. For this purpose localized
p_mctlons, called wavelets, are being used. By changing the

the exponents are essential in order to determine the unive . . :
sality class of the problem scale of the wavelet, one is able at a certain location to focus
' on details at higher and higher resolution. By taking advan-

It is quite difficult to estimate these exponents from ex- . ) :
perimental data. Too often statements are made that af@9€ Of the central properties of self-affine functions, we de-

based on rather marginal data analysis. It is therefore impof V€ @ scaling relation between wavelet amplitudes at differ-
ent scales, from which the Hurst exponent can be extracted.

tant to search for alternative ways of analyzing the data— h hod i i lized to hiaher di ;
even if the new methods are not better than those already ihhe method is easily generalized to Igher dimensions.
To our knowledge, two papers discuss wavelet based

existence. More tools to analyze the data widens the possj- hni ) . ith
bility to cross check the conclusions. It is in this spirit that ©CNIGUes in connection with Hurst exponent measurements

we present in this paper a new method for determining{g’_g]' In [8], the Wa\_/elet transform modulus ma.Xima method
roughness exponents. The strong point of this new method S mtrodzced, and ing], Wavelr?t pacl:]etdanalyﬂs IS uaed tg_f
its excellent averaging properties that make it possible tEXtract the Hurst exponent. The method we present here dif-

extract roughness exponents with high precision even whe rs from both of thgse. We wouI(_j also like to mention two
one or only a few samples are available. other papers that discuss self-affine fractals by using wave-

Traditionally, the methods used to determine the self/€tS [10,11. However, these two papers are mainly con-
affine exponents are done in €11) dimensions ¢=2). In cerned about the so-called inverse fractal problem for self-

this case we have a single gloljaélf-affine exponent and it affme. fractals gnd not measuring of Hurst exponents. .

is usually referred to as thElurst or roughness exponent. This paper is or_gamzed as f.OHOWS' In Sec. I.l We review
Over the past decade or so, several different methods ha\}Ee central properties OT seIf-gffme surfac'es, while in Sec. I
been developed in order to measure this exponent from e wavelet transform is reviewed. Section IV presents the
perimental datasee Ref.[7] and references therginThe derivation of the scaling relation for self-affine functions in

most popular method is tHeourier power spectrum method the wavelt_et domain. In. Sec. V this scaling relation is applied
(FPS and we will use this method as “reference” here. A to synthetic and experimental data, and Hurst exponents are

extracted. Finally, in Sec. VI, our conclusion is presented.

. . Il. SELF-AFFINE SURFACES
*Electronic address: Ingve.Simonsen@phys.ntnu.no

"Electronic address: Alex.Hansen@phys.ntnu.no As stated in the introduction, self-affine surfaces, which
*Electronic address: Olav-Magnar.Nes@iku.sintef.no are generalizations of Brownian motiph2,13, have statis-

1063-651X/98/583)/27799)/$15.00 PRE 58 2779 © 1998 The American Physical Society



2780 INGVE SIMONSEN, ALEX HANSEN, AND OLAV MAGNAR NES PRE 58

tical properties characterized by a set of exponents. Let umeaning that localization in both position and frequency si-
assume that we have a functidmn(x), of one variable only multaneously is not possible.

(for simplicity), i.e., a fractional Brownian motiofil2,13. The wavelets are parameterized bgcale paramete(di-
Herex is the horizontal variable, whilk is the vertical one. lation parametgra>0, and atranslation parameter— o«
Self-affinity is defined through statistical invariance under<b<. What makes the wavelet transform remarkable is
the transformation that the wavelet basis can be constructed from one single

function (x) according to
X—AX,

—aH -b
h—\"h. (1b) XT . 3)

‘/’a;b(x):‘/’

HereH is the Hurst exponent. By combining such transfor-
mations, one can construct the affine group. Thus, self-affine . . .
surfaces ardstatistically invariant under the affine group. !n the usual terminologyy/(x) is the mother function or

An alternative way of expressing this invariance is by theanalyzing wavelet _
relation Given a functionh(x), the (continuou$ wavelet trans-

form is defined as
h(x)=\""h(AX). 2

Here the symbot means statistical equality. This form will N .

prove useful later. The Hurst exponddtis limited to the wihl(a,b)= ﬁfw"baib(x)h(x)dx' )

range O<H<1. The lower limit comes from requiring the

surface width to decrease when smaller sections of the sur-

face are studiedthe opposite being unphysig¢awnhile the  Here ¢*(x) denotes the complex conjugate ¢{x). We

upper limit comes from assuming the surface to be asympshould emphasize that some authors use a somewhat differ-

totically flat. ent definition when it comes to the prefactor. The specific
Equationg1) and(2) express that for self-affine functions formulas we derive further on in analyzing the self-affine

one must rescale the horizontal and vertical direction differsurfaces depend on the definition we have chosen.

ently in order to have statistical invariance. Thus, self-affine In order for a functiony(x) to be usable as an analyzing

surfaces are by construction anisotropic in the horizontal anwavelet, one must demand that it has zero mean. However,

vertical direction, except whehi=1 (self-similarity). The in nearly all applications it is in addition required to be or-

Hurst exponent H expresses the tendency fodh  thogonal to some lower-order polynomials, i.e.,

=[dh(x)/dx]dx to change sign. Whehi = 1/2 (Brownian

motion), the sign ofdh changes randomly, and the corre- o

sponding surface possesses no spatial correlations. When f xMH(x)dx=0, O=m=n. (5)

1/2<H=<1, the sign tends not to change, while fox6l *

<1/2 there is a tendency for the sign to chaiigeticorrela-

tion). In both intervals there are long-range correlations fall-jore the upper limin is related to what is called the order of
ing off as a power law. Surfaces with>1/2 are said to be

. ] ] . the wavelet.
persistent, and those witH<1/2 are antipersistent. Unlike, for instance, the more familiar Fourier transform,
the wavelet transform is not completely specified before the
lll. WAVELET TRANSFORM analyzing waveleti.e., the basisis given. There are a large

number of possible candidates, but we will concentrate ex-

Here we review some of the important properties of ' . -
. ; clusively on one of the most popular families, namely, the
wavelets, without any attempt at being complete. Rather, ou , ,
aubechies wavelet family14].

aim is to provide enough background for the discussion tha In order for the wavelet transform to be useful for numeri-

feogowséflfﬂ]a more complete treatment of wavelets, S€€al calculations, it has to be accompanied by an effective

r}umerical implementation. Such an algorithm was developed

In physics and mathemapcs there are many examples %y Mallat, and the resulting transform is known as the dis-
problems that are more easily solved in a new set of coordi-

nates(basig, with the Fourier transform being the most fa- crete wavelet transforrfil5).

mous one. Such transforms consist of calculating the ampli-

tudes for eac_h ba_sis function o_f the new domain. As long as |\, AVERAGED WAVELET COEEFICIENT METHOD

a set of functions is complete, it can be used as a root for an

integral transform. As was shown in Sec. Il, the defining feature of self-affine
The wavelet transform is a relatively ngimtegra) trans-  profiles is the scaling properfgf. Egs.(1) and(2)]. Accord-

form. What makes this transform special is that the set ofng to Eq. (2) one should have W[h(x)](a,b)

basis functions, known as wavelets, are chosen to be wet W[\ ~"h(Ax)](a,b) for a self-affine functiorn(x) in the

localized (have compact supportoth in space and fre- wavelet domain. Here, in expressions likeé[h(x)](a,b),

guency. Thus, one has some kind of “dual localization” of we have included thex dependence explicitly for conve-

the wavelets. This contrasts with the situation met for thenience.

Fourier transform where one only has “monolocalization,” Hence after a simple change of variable one has
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Wlh(x)](a,b)=W[x "h(xx)](a,b) 10° 10 o
1 x—b o ’ -
=— )\Hh()\x)z,/f*<—>dx g 10 , 06
Val - a £ 107 T o4
1 (= X' —\b 10° 02
:)\—(1/2)—H_f h(x’ * dx’ »
\/ﬁ —oo (x)¥ Aa 10T 0 107 10T 10 900 02 04 06 08 10
a H
:h_(llz)_HW[h(X)](kay)\b)- 1.0
10° |9 d)
Thus, we have o 08
= 06
Wlh]l(ra,xb)=\Y2+H W[ h](a,b). 6) £ 10 T,
Note that this scaling relation relies heavily on the definition - 02

(4), so for other definitions of the wavelet transform, this 19° PP T T BT . 00,507 o7 05 08 10

equation must be changed accordingly. What the scaling re f H

lation (6) expresses is that if we perform disotropig res-

caling (with factor\) of the wavelet domain of a self-affine

functlon,.thls is the §am§ as rescall(rl%)ghf wavelet amp“tUdgensity method Kig). All error bars in this and later figures are

of the original d‘.’”.‘?"” with a factox ) . regression errors onlya) The AWC functionW[h](a) vs scalea
From the definition of the wavelet transform, it follows for Hurst exponentH=0.7. The solid line is the regression line to

directly that the wavelet domain of a one-dimensional func+,o scaling region. The estimated Hurst exponentlig=0.69

tion is two dimensional; one dimension corresponding t0+q o1 (b) Wavelet estimated Hurst exponentd,{) for various
scale and the other to spaigenslation. So, for instance, for  actual Hurst exponentsl. (c) The power spectrumP(f) vs fre-
a specified scale we have an infinite number of amplitudeguencyf for actual Hurst exponeriti=0.7. The solid line is the
corresponding to various translation paramekeré/hen one  regression fit. The estimated Hurst exponert js=0.70+ 0.01.(d)

is analyzing self-affine functions, like any fractal, it is the Fourier estimated Hurst exponentsl{) for various actual Hurst
scale rather then the translation that is of general interest texponentsH. The number of samples per data point viés 100,
us. With this in mind, we propose tverage outhe depen- and the length of the profiles weke= 4096. The same profiles were
dency on the translation parameter in the wavelet domain imsed for both the wavelet and Fourier analysis.

order to find a representative amplitude at a given scale. We

suggest to use the following formula for the average We call this simple method thaveraged wavelet coeffi-

cient (AWC) method.
Wh](a)=([W[hl(a,b)[)y,

where (- ), is the standard arithmetic mean value operator V- DATA ANALYSIS WITH THE AVERAGED WAVELET

with respect to the variablb. Here one could have chosen COEFFICIENT (AWC) METHOD

some othe'r kind of averaging procedure §u<_:h as geqmetrical A. Synthetic data

or harmonic means. The absolute value is included in order ) . ) ]

to get some kind of a “wavelet energy.” The main pointis /& are now in position to test our scaling relati@ on

that one gets, by averaging the absolute value of the wavel&tificial and real data, and estw_nate the correspon_dlng Hurst
coefficients, a representative “wavelet energy” at a given®XPonents. We start by performing an AWC analysis on a set
scale. If the data set is missing data or contains clear anom&! artificially generated self-affine profiles with predefined
lies in a region, the average could still be taken over wavelef!Urst exponents. The self-affine generator used in this work
coefficients corresponding to wavelets localized outside thé the Voss algorithni16], which is also known as théter-
“damaged” region. However, by doing so we have to dropaf[ed mldpomt d|splacem_ent algorithm. The qL_Jallty of a
some of the largest scales completely because they inev@iven analyzing method is assessed by the difference be-
tablely will include the unwanted region. The Fourier tween the Hurst exponent chosen for the Voss generator and

method does not have this nice property, and a missing datqe estimated value from the analysis.
region will destroy the whole data set. In our first illustration of the practical performance of the

FIG. 1. Hurst exponents estimated [§§) and(b)] the averaged
wavelet methodif,,) and[(c) and(d)] the Fourier power spectrum

Hence the scaling relatiof6) becomes AWC method, we have generatét=100 artificial profiles
with Hurst exponenH = 0.7 and length. =4096. The wave-
W[h](Aa)=\Y2THW[h](a). (8)  let used here and from now on, if nothing different is indi-

cated, is the Daubechies wavelet of order(D2aub13. We

The strategy for the data analysis should now be cldar:  will later demonstrate that this choice of wavelet order is not
Wavelet transform the data into the wavelet domé&n Cal-  crucial in any way{17] (Fig. 4). For each sample the mean
culate the averaged wavelet coefficiaffh](a) according drift of the profile, defined as the line connecting its first and
to Eq.(7). (3) PlotW[ h](a) against scala in a log-log plot.  last point, is subtracted. In Fig. 1 the results are presented for
A scaling regime consisting of a straight line in this plot both the AWC and FPS density method. In both cases a
implies self-affine behavior of the data. The slope of thisstraight line fit is performed to th@og-log) data, with result-
straight line is3 +H. ing slopes of, respectively, 1.390.01 and —2.39+0.02.
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) ) FIG. 3. The same as Fig. 1, but now with only one sample,
FIG. 2. The same as Figs(k) and(d), but now with the fol- =1

lowing number of samplebl=50 [(a) and (b)] andN=5 [(c) and
(] other kind of wavelets does not change this conclusion.

We have also investigated the situation where the length
Theoretically these slopes should ¢ H=1.2[cf. Eq.(8)] of the profiles varies. Our findings are compiled in Table I.
and — (1+2H)=—2.4[12,13 for, respectively, the AWC The results for the AWC method are generally in agreement
and FPS methods. Hence, the corresponding estimated HuMith the input values for system sizes larger or equal to
exponents, in obvious notation, becorg=0.69+0.01and = 256. It should also be noted that the regression efmot
H=0.70+0.01. Here we should emphasize that the errordiecessarily the actual erjagenerally decreases with increas-
indicated are only the regression errors in the actual regiorid system size. This is as expected because when the system
Errors due to different choices of regression regions are ndtize increases the scaling region becomes larger, resulting in
included even if they typically are larger than the regressiorft better regression fit. _ _
error itself. The quality of the fit is indicated in Figgal and In summary, for the study dfclean synthetic self-affine
1(c), by including the fitting function. Empirically we would data, we may conclude that the AWC method works well. It
expect thetotal error of the Fourier power spectral density IS, in particular, a good choice when only a few number of
method to be larger then the corresponding error of the Awcamples are available, which is often the case in experimen-
method. This is so because the linear scaling region is smalfal situations.
est for the FPS method. In order to quantify the behavior for
different Hurst exponents, we have performed a correspond- B. Stability against noise, drift, and distortions

ing analysis to the above, for various exponents in the range Ay real measurements are subject to noise, and distor-

0<H<1. The results are shown in Figsbl and Xd). We 55 These may have their origin in measuring uncertain-
observe that there are good agreement between the actual

and estimated exponents in the whole range of Hurst expo- 10°

nents independent of method. 2 | ©Daub4
It is often the case that one does not have many data 101 PO ]
samples available for analysis, especially when dealing with 10" F aDaunis 1
experimental data. To discuss this situation we have per- = 10° | . ]
formed the same analysis as above, but now with a smaller = 10"
number of samples$y=50 andN=5 (Fig. 2) andN=1 (Fig. % » ] ;
3). Still the correspondence with the input value is relatively 10 r 1
good. However, for small number of samples the uncertainty 107 | i
in the slope determination becomes large, as illustrated in 107 i > ]
Figs. 3a) and 3c). This tendency is much more explicit for 5
the FPS method than for the AWC approach. 10 10" 3T 10T T o
One could now ask how these results depend on the spe-
cific order chosen for actual wavelet. In Fig. 4 we have in- a
cluded a graph showing the AWC functiow[h](a), for FIG. 4. The AWC functionW[h](a) vs scalea, for various

different orderdi.e., smoothnegof the Daubechies wavelet chpjces of wavelet ordefDaubechies familyas indicated in the

family. With the above comment made on the true error infigure. The data are for self-affine profiles with Hurst exportént
the Hurst exponent measurements, we conclude that withia 0.7, and the number of samples used Was100. The length of

the actual errors the AWC method does not seem to be sefhe profiles wad. =4096. The extracted Hurst exponents wete
sitive to the order of the wavelet, at least not for the=0.68+0.01 for Daub4, anti=0.70+0.01 in all other cases. The
Daubechies wavelet family. A nonsystematic study withcurves are shifted relative to that of Daub12 for clarity.
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TABLE |. Estimated Hurst exponents for the FPH{) and 10°

AWC methods H,y) for different system sizek. The predefined 6.0} @ o b
Hurst exponent wagl =0.7, and in all calculations the number of .
samples used wall=100. The Daubechies wavelet of order 12 + 4.0 z
was used. = £ 107

2.0 107
L He Hyw o 10°
64 057004 067005 00 20 4.0X 6.0 80 10.0 10" 107 10‘2a 107 10°
128 0.65-0.03 0.66:£0.03 60 o
256 0.66-0.01 0.69:0.02 )
512 0.66-0.02 0.7G£0.02 0 10° //
1024 0.706:0.01 0.76:0.01 = ' % o p *’
2048 0.76:0.01 0.76:0.01 < o0 g ,/,.»”’V
4096 0.70:0.01 0.76:0.01 ’ 107 /‘/7"

%00 20 40 60 80 100 107410“‘ 10;3 10% 107
ties, instrumental noise and nonlinearities that might trans- X

form the signal in some way. Th(_e nonllr!earmes may COME€ o 6. The effect of added linedfa) and (b)] and quadratic
from the response of the measuring ‘?'eV'?eS used. t_"owe\ﬁr(c) and (d)] drift to the data. In all cases the self-affine component
it may also be that the variable stud_led is not the “good” ;¢ the data hadH=0.7. (a) One sample with linear driffy(x)
one. In order for a method of analysis to be useful for real_ g 5], () The AWC functionW[h](a) vs scalea for data with
world data, it has to be stable with respect both to noise anghear drift of the type showed ife). The number of samples used
distortions. wasN= 100 and the length of all the profiles was-4096. The full

We start by studying distortions. Suppose that rather thapne is the regression line. The extracted Hurst exponenH is
measuring th@enericself-affine functionh(x), we observe =0.70+0.01.[(c) and (d)] The same a$a) and (b), respectively,

F[h(x)], i.e., but now for quadratic drif{ y(x)=0.05¢]. In (c) we have also

included the drift separatelfthe dashed line Notice the well-
h(x)—F[h(x)], (9)  developed crossover between the larger and smaller scales. in
The extracted Hurst exponenthts=0.71+ 0.05. The slopex of the
which is a one-to-one transformation. This may for exampleegression linddot-dashejifor the large scales ia=2.29+0.04.
result from distortion of the original signal through the in-

strumentation. Note that we have not allowed for an explicittan be seen, the Hurst exponent is unchanged within the
x dependence iff, because this may destroy the self-affinity numerical errors. The logarithmic function is a highly non-
(more about this later By other methods it can be demon- linear function, something that thus changes the input data
strated that the transformati@®) does not change the Hurst dramatically, thus providing a good testing ground of this
exponent[4]. A qualitative way to understand this result is assumption.
that, since the Hurst exponeftis related to the tendency of ~ In many situations one has signals possessing some kind
dh to Change Sigr(see earlier discussimnthe Hurst expo- of drift. It has earlier been shown that such drifts can dra-
nent should be insensitive to transformations of the @e matically influence the rellablllty of the measured Hurst ex-
as long asF is a relatively smooth functional. To demon- ponent[20]. In order to test our method in this respect, we
strate the stability of the AWC method to such distortions,have perfomed an analysis where we have added I[irégs.
we have performed a numerical experiment, where we hav(@) and @b)] and quadratic driffFigs. 6c) and &d)] to the
put F[h(x)]=log,d h(x)], and then calculated the Hurst ex- self-affine component of the Qata. In th|s_part of the analysis
ponent fromF[h(x)]. The result is shown in Fig. 5, and as We have not subtracted the line connecting the first and last

point of our data set ahead of the wavelet transform as de-
s 1.0 scribed earlier. For the linear case, there is only a weak de-
a) os b) pendence, independent of scale, on the drift of the [ditgs.

’ 6(a) and Gb)]. However, for the quadratic case, the situation
10° , 08 is somewhat different. Here the drift creates a nice crossover
107 T 04 between the self-affine region, dominating at small scales,
107 02 and the drift at large scales. This can be easily seen from Fig.
10° 6(d). The Hurst exponent obtained from the small-scale re-
10° %00 02z 04 06 08 10 gion isH=0.71*+0.05, which fits quite well to the exponent,

a H H=0.70, of the self-affine component of the data. In both

FIG. 5. (3 The AWC functionW[g](a) vs scalea where ~ C2S€S the amplitude of the drift seems to be of secondary
g(x)=log;dh(x)] andh(x) is a self-affine function wittH=0.7. ~ importance. Based on the above, we conclude that our
The number of samples used whis=100, and the length of the Method seems to work quite well for data with drift.
profiles was. = 4096. The solid line is the regression fit to the data, It is easy to see that if the functionBl has some explicit
and the estimated Hurst exponent whg=0.70=0.01(b) Wavelet ~ dependence on the “horizontal” coordinafee., x in our
measured Hurst exponerits, for various actual exponents in the case, the self-affine correlation property may be destroyed.
range 0.xH<0.9. Spatial noise of any kind has exactly this property. Since
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FIG. 7. (a) shows a self-affine profile withl =0.7. To this pro-
file we addy=10% white(b), pink (c), and brown(d) noise. The FIG. 8. The effect of white noise added to the self-affine com-
lower curve in(b)—(d) is the added noise. ponent of the data. The AWC functiohN[h](a) vs scalea for the

self-affine component of the data with=0.7 andH=0.2 and a
such noise is usually always found in real data, it is impOrmoise levely=10% [(a) and (b)]. The estimated Hurst exponents
tant to investigate how sensitive the AWC algorithm is tOfor the curves shown ifa) and (b) were, respectivelyH,,=0.71
such artifacts. In order to simulate this situation, we apply+0.02 andH,,=0.21=0.01. The extracted Hurst exponents with
the functional F[h(x),x]=h(x)+ 5(x), where 5(x) is a regression errors for Hurst exponents in the rangeH3<1 and
noise term, to clean self-affine datgx), and then pro- step 0.1(c). The effect of the noise on the AWC functiow[ h]
ceed with the AWC analysis. The amount of noise add-X(a), for various noise levely as indicated in(d). The Hurst
ed to the data, i.e., the noise rajg is defined asy exponent of the self-affine component wés-0.7 in this case. The
= (max 7(X)| —min| 7(xX)|)/(maxh(x)| —min|h(x)|). number of samples per data point wés 100, and the length of the

In this paper we have chosen to work with white, pink profiles wasL.=4096.
(1/f), and brown (1f%) noise. Quite recently, Aguilar and

co-workers have pointed out that scanning tunneling microsregion is affected without, fogy=10%, introducing signifi-
copy instrument noise is pinR1]. The quantitative effect of cant changes over the non-noisy res{ifigs. 9—-10b)]. As
adding xy=10% noise to a given self-affine profile is dem- the noise level increasésee Figs. 9—1@)] larger deviation
onstrated in Fig. 7. The results of the AWC analysis for thefrom the none-noisy case starts to emerge. By noting that
case y=10% of added white, pink, or brown noise are pink and brown noise is nothing but self-affine signals with
shown in, respectively, Fig. 8, Fig. 9, and Fig. 10. In all Hurst exponents of, respectivel{y=0 and H=0.5, we
casegwith y=10%) we see that the AWC method extractswould expect that the estimated exponents are shifted to-
the actual Hurst exponent quite well. Notice that for thewards these values. This is supported by the observation

white noise case, only the lower scales, if any, seem to bgom Figs. 9d) and 1@d) that the slopes, for a noisk
considerably affected by the noise. It should be observed that

for H=0.7 [see Fig. 8&)] a nice crossover to thénow .
smalle) scaling regime is shown, while far=0.2 [Fig. 10 a)
8(b)] this crossover is not visible. This behavior we have 1 10

found to be quite systematic in the sense that the higheg 1o’

b)

Wh](a)

Hurst exponents(in the range 8&<H<1) the more pro- 510-1 107

nounced was the crossover, and the smallen$le#-affine 10 -

scaling regime. The explanation for this behavior is the fol- .

lowing: For Hurst exponents in the lower range Bl <0.5, 0% e L T T A T T
(i.e., anticorrelatiopthe profiles are quite spiky with sharp a a

tops and deep valleys. This means that the wavelet coeffi 4,
cients at low scales become large for low Hurst exponents |9
with the consequence that the contribution of the noise is
suppressed. As the Hurst exponent gets larger, and thus tr
profiles become more smooth, the effect of the noise at smal T o4
scales will become more and more important resulting in a o2
well-defined crossover. This crossover is easily seen in Fig.
8(a). 00 02 04 06 08 1.0
For the white noise case, we just saw that mainly the ; 2
small scales, if any, were affected by the noise. This situation FIG. 9. The same as Fig. 8, but now pink noise added. The
is somewhat different for the pink and brown noise casegstimated Hurst exponents for the curves shown in Faysand(b)
(see Figs. 9 and 20For these two noise types the whole are, respectivelyid,y=0.69+0.01 andH,,=0.21+0.01.

0.6

Wh](a)
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FIG. 10. The same as Fig. 8, but now brown noise is added. The FIG. 11. The wavelef(a) and (c)] and Fourier[(b) and (d)]
estimated Hurst exponents for the curves showfajrand (b) are,  analysis of synthetic data with Hurst exponéht0.7 after apply-
respectivelyH,,=0.69+0.01 andH,,=0.19+0.01. ing a five-point filter to them. Iita) and(b), the results are averaged

over N=100 samples, while irfc) and (d) only one sample N
=0.7 profile seem to decrease with increasing noise Igvel =1) is used. In all casds=4096. The solid lines are the regression
It should also be observed that there seems to be a mofés to the scaling regions. The crossovers are clearly seen in all
well-developed crossover for the pink than for the browncases. Theoretically the crossover values age0.003 andf

case. This stems from the fact that Figé&d)%and 1@d) are ~ —0.09 for the wavelet and Fourier method, respectively.
shown forH=0.7, giving the better “contrast” for the pink
limiting case ofH=0. larger. The results for the two methods are consistent and

Self-affine scaling behavior is usually only found over acoincide with the results of other studies of fracture granite
limited region of spacéor time), and it is important to be surfaceg[23]. The reason for the good agreement between
able to estimate these crossover scales. To be able to invegre two methods, and the good quality of both regression fits
tigate the potential of the AWC method in this respect, weis due mainly to the large number of samples available, as
have generated some artificial self-affine profiles with  the dataset contains 211 one-dimensional profiles of length
=0.7 and lengthL=4096 and used a standard five-point 2050. It is interesting to observe that the exponent for the
filter to destroy the self-affine correlations at small distance$ractured granite surface reported here is in complete agree-
(i.e., destroy correlations between 11 subsequent pofds  ment with earlier speculations that fracture surfaces should
the AWC method we should expect to see a crossover diave a universal Hurst exponent lef=0.8[3,24,25
scalesa,=0.003, while for the FPS method the crossover
frequency is expected &=0.09. As can be seen from Fig.

11, this is indeed what we find. For the largest nhumber of 240 a) 1 b)
samples l=100) the AWC and FPS method are equivalent, 220 10°
but for only one sample the crossover is most easily seen foE 200 B
the wavelet method as shown in Figs(dland 11d). § 18.0 s 10
16.0 107
. . C: Real dat.a . 1400 200 400 600 800 10* 10°  10° 107 10°

As mentioned in the introduction, self-affine surfaces can x [mm] a
be found in many places in the sciences. Here we will in
particular discuss two quite different examples, clearly dem- o
onstrating the general presence of self-affine structures. 10

Our first example is taken from geology, and concerns the. 10*
structure of a fractured granite surfd@2]. The surface con- % 1¢*
tains 205211 data points. One representative profile of
this surface is given in Fig. 18). The results of the wavelet -

and Fourier analysis, using the methods described earlier it '® 10* 1% 102 10"

this paper, are collected in Figs.(b2and 1Zc). We see that !

there are nice scaling regions in both cases indicating that the g1 12. (a) One single representative profile from the granite
fractured granite surface is indeed self-affine. The Hurst exgacture. The number of points in the profilelis= 2050. (b) AWC
ponents, obtained by a regression fit to the sqaling region, arghalysis of the entire set of (205®11) data points. The solid line
Hy=0.81=0.02 andHg=0.79+0.03, respectively, for the s the regression fit to the scaling region. The corresponding Hurst
AWC and FPS methods. Note that also here only the regregxponent isH,,=0.81+ 0.02.(c) FPS analysis of the data. Here the
sion error is indicated and that the “true error” is somewhatsolid line corresponds to a Hurst exponéht=0.79+0.03.
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140 differences in the accuracy of the regression fits for the two
12,0 methods. This is most easily seen by comparing Fig&)13
10.0 and 13c) by visual inspection. The error bars associated
with the FPS analysis, based solely on the regression analy-
sis, are, in particular, underestimated. It is difficult to identify

Share Price [10° lire]
[=:]
o

6.0 a scaling region at all. We find it very interesting to observe

40 e that a Hurst exponeri =0.65 is observed in the stock mar-
days ket simulations by Bak, Paczuski, and Shuf@kwhen using

1o 10" the Urn model with volatility feedback.

b) This example is, in our view, a very good example of the

power of the AWC method in cases where few samples are

z10 =10 available, and we believe it to have the potential of becoming
£ 10° Rl a useful method in practical situations.

10° |, 10°

10" 10t VI. CONCLUSIONS

8
10* 10°  10® 107
a f

We have introduced, derived and tested a new simple
FIG. 13. (a) Fiat share prices taken from the Milan Stock Ex- method for Hurst exponent measurements based on the
change for the period from September 1988y 1) to May 1991,  wavelet transform. It has been compared to the Fourier
with three observations per da) The result of the wavelet analy- power spectrum method where appropriate. We find that the
sis for the data irfa). The estimated Hurst exponent, correspondingtwo methods performs approximately equally for large num-
to the solid line, iSHW: 0.65+ 003(C) The result of the Fourier ber of Samp|es_ However’ for small numbers of 5amp|es this
analysis for the data ife). The Hurst exponent in this casells  new method outperforms the more traditional Fourier trans-
=0.62£0.06. Note the more well-behaved scaling region for theform pased method. The AWC method are also demonstrated
wavelet method as compared to the Fourier method. to handle noisy and experimental data in a satisfactory man-

Unfortunately, the availability of a large number of ner.

samples is rare, and in some cases it is not even appropriate
to talk about several samples. In order to illustrate this point,
we have included share prices for the Italian automobile
manufacturer FIAT taken from the Milan Stock Exchange We are grateful to J. Schmittbuhl for permission to use his
for the period from September 1988 to May 1991 with threemeasurements for the fractured granite surface. We also
quotes per day26] [Fig. 13a)]. Observe that here only one thank B. Vidakovic for providing us with the Fiat share price
sample for a given time period is available. The result of thedata. One of the authok S.) thanks the Research Council
corresponding analysis is given in Figs(iBand 13c). The  of Norway and Norsk Hydro AS for financial support. This
estimated Hurst exponents aié¢,,=0.65-0.03 andHr  work has received support from the Research Council of
=0.62+0.06 from, respectively, the AWC and FPS meth- Norway (Program for Supercomputinghrough a grant of
ods. These two results are consistent, but there are noticeatdemputing time.
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